
FPGA Based Emulation For Remote Wound
Monitoring and Management

Vasileios Tsoutsouras, Sotirios Xydis, Dimitrios Soudris
Institute of Communication and Computer Systems, Greece
Contact info: {billtsou, sxydis, dsoudris}@microlab.ntua.gr

Abstract—Chronic wounds form a emerging hospitalization
factor especially for elderly people. More than 10 million people
in Europe suffer from chronic wounds, a number which is
expected to grow due to the aging of the population. In order to
address chronic wound management, SWAN-iCare project aims
to develop a smart wearable and autonomous negative pressure
device for wound monitoring and therapy. In this paper, we
present a hardware-software framework for emulation, early
functional prototyping and exploration of such wearable medical
devices targeting to remote wound management. We analyze
the requirements, the HW components and SW architecture for
developing a realistic emulation platform for the specific appli-
cation domain. We show that utilizing the proposed framework
several architectural configurations can be explored in terms of
performance and resource usage that can be further used as
valuable feed-back during the design of the medical device. 1

Index Terms—wearable medical devices, HW/SW co-design,
wound monitoring and management, emulation framework

I. INTRODUCTION

Technology scaling and Improvement in electronic device
manufacturing have enabled the increasing use of medical
wearable devices. These devices are being (i) in close contact
to the human body, (ii) autonomous while (iii) constantly
monitoring various biological aspects and (iv) having the
ability to react according to the state of the of their input.
An emerging application domain of wearable devices is the
management of patients with chronic, hard to heal wounds
especially diabetic foot ulcers (DFU) and venus leg ulcer
(VLU).

Thus, a wearable device constantly monitoring the status of
the wound and providing information of the healing process
and early identification of wound deterioration, can be proven
extremely critical both for (i) improving the patients’ quality
of life, since patient’s need for hospitalization is minimized
with a reassurance that wound’s condition is appropriately
monitored, as well as (ii) minimizing healthcare costs, reduced
hospitalization, without sacrificing the quality of treatment.

Swan-iCare [1], is an ambiguous project aiming at putting
together all the necessary components to develop a system
of efficient ecosystem for chronic wound management. Swan-
iCare is based on the medical concept of Negative Pres-
sure Wound Therapy (NPWT), in which negative pressure is
applied on the wound to assist its healing process. In the
core of Swan-iCare ecosystem, there is an embedded Smart
Negative Pressure Wearable Device (SNPWD) to (i) monitor
the biological parameters of the wound, (ii) combine them
in order to assess the wound status status, (iii) enforce and
control the negative pressure therapy and (iv) provide all these
information to a Back-End clinical server for further analysis
by the Healthcare Experts.

The deployment of such a multi-functional wearable devices
is very complex procedure since it requires both hardware
(HW) and software (SW) development, analysis and valida-
tion. Traditionally design approaches/methodologies serialize
hardware and software development with the latter following
the completion of the manufacturing of the first. However,

1This work has been partially supported by the EC funded project Swan-
iCare (FP7-ICT, Project No. 317894)

such an approach is very time consuming, inducing also high
recurring costs.

In this paper, we present a HW/SW framework that emulates
remote wound monitoring and management wearable devices,
for enabling early functional prototyping of the embedded
application. The core of the HW framework is a Field Pro-
grammable Gate Array (FPGA) [2] device, extended with
proper electronic equipment that implements communication,
sensor data exchange, user I/F functions and regulation of
(NPWT).

II. THE HW EMULATION PLATFORM

EPD SCREEN DRIVING UNIT - EPD SCREEN

PUMP MOTOR SIMULATION BOARD

FPGA 
COREETHERNET

DEBUGGING 
INTERFACE

SIMULATION
BOARD 

CONNECTION

LCD SCREENBUTTONS

EPD CONNECTION

BLE CONNECTION

Fig. 1. The HW platform.

Figure 1 shows the HW platform assembled for emulating
remote wound monitoring and management wearable devices.
The basic element of the HW emulation platform is a Xilinx
Spartan-III FPGA device [2]. The FPGA instantiates the
control microprocessor and every interface of the peripheral
devices is connected to it. We synthesize the MicroBlaze, a
soft-core IP processor, provided by Xilinx. It is a RISC proces-
sor with 3-stage pipeline and clock frequency up to 50 MHz.
Microblaze supports architectural parameters customization
thus enabling exploration of differing design configurations to
be performed, in order to tailor the design to the characteristics
of the application’s SW components. The on-board Ethernet
module of Spartan-III has been used to implement the com-
munication of the embedded device with clinical Back-end
server. The LWIp tcp/ip protocol stack [6] was used and the
processing of the packets was a task which was handled by
the main processor. The server was implemented on desktop
computer where the medical device uploads its information.

A Bluetooth Low Energy (BLE) module has been allocated
for communicating wound sensor data with the main processor.
Wireless interface has been selected instead of a wired one,
since lack of wires enables the design of a more comfortable
device.

Regarding to the user I/F, an ePaper Display (EPD) [4] was
connected through a UART interface. The EPD shows infor-
mation about the status of the wearable device and messages
about the evolution of the treatment. We used the 1.44“ EPD
panel that satisfies the need for easy to read messages.

Dimitris
Typewritten Text

Dimitris
Typewritten Text

Dimitris
Typewritten Text

Dimitris
Typewritten Text

Dimitris
Typewritten Text

Dimitris
Typewritten Text

Dimitris
Typewritten Text

Dimitris
Typewritten Text

Dimitris
Typewritten Text
2015, 4th International conference on Modern Circuits and Systems Technologies



IDLE

Power on

Write set point to actuator

Process incoming ethernet 
packets

Check power levels

Sample patient activity sensor

State = CHECK_POWER

State = CHECK_ACTIVITY

Return to main program

Time for activity 
sensor sampling

Time for 
power check

Nothing to 
be done

Initialization phase

Read sensor data

Execute data 
fusion algorithm

State = IDLE

Read incoming packet from BLE

Decode and structure sensor value

Set flag indicating new sensor value

Return to main program

New sensor reading

In
te

rr
up

t S
er

vic
e 

Ro
ut

in
e

Ti
m

er
 IS

R
BL

E 
IS

R

Update LCD screen

Update EPD screen

Read input from actuator

Calculate new set point

CHECK_ACTIVITY
CHECK_POWER

No new 
sensor data

Periodic Tasks Asynchronous Tasks

Fig. 2. Task interaction of the embedded SW application.

In the proposed HW platform, the real-time control of the
pump is performed through the speed regulation of the motor
driving the pump. A model of the pump in the time-domain
was created in Matlab using nominal values from an actual
DC motor and then a PI controller was configured to function
as the controller of this motor. PI control was used in order to
ensure the stability of the of the control by sacrificing settling
time. This choice was made on the premise that it is important
to ensure that the pump will not momentarily assert great
pressure on the wound which could probably damage the tissue
on and around the wound. To achieve real time simulation of
both the motor behavior and the controller response, the model
of the motor was implemented on a Beagle development board
[5] external to the FPGA.

III. THE EMBEDDED SW APPLICATION

The embedded SW application of the SNPWD medical
device will be responsible for the control of all the systems
on the device. Fig. 2 depicts an abstract view of its internal
tasks and their interaction. A subset of these tasks is periodic
(left part of Figure 2) and need to be executed in predefined
intervals. To achieve that, a timer is used, set to expire on the
interval of the most time-critical of part of the code, in our
case the pump control task. This ensures that pump control,
the highest priority task of our design, will be executed on
time no matter what the state of the main program is.

The same timer triggers other periodic tasks like power
management or activity sensor sampling which should be
executed in different interval compared to pump control. Other
tasks, like input from BLE which is essentially input from in-
wound sensors, are executed only when such data are present
and thus falling into the category of event-driven tasks. In this
case, the interrupting handling function sets appropriate flags
to indicate presence of new data, which will be collected and
analysed by the main part of the software only when other
tasks of higher priority are complete.

A SW sensor data fusion engine is integrated with the SW
application for evaluating and combining the data sampled by
the various sensors. The fusion engine can generate either
alarms, related to the detection of mechanical malfunctions,
or warnings related to the detection of medical related critical
situations. We devised a general fusion engine module that
can be customized across differing treatment and therapy
scenarios. For the medical decision making, classification
algorithms used where Neural Networks (NN), Support Vector
Machines (SVM) and Decision Trees (D. Trees) [3].

 

0

100

200

300

400

500

600

700

800

900

0 - 0 64 - 64 128 - 128 256 - 256 512 - 512 1024 - 1024 2048 - 2048 4096 - 4096

Ti
m

e
 (

m
s)

 

Instruction - Data Cache size (bytes) 

SVM-w/o FPU NN-w/o FPU SVM-FPU NN-FPU D. Trees-w/o FPU D. Trees-FPU

Fig. 3. Architectural configurations impact on performance.

IV. EXPERIMENTAL EVALUATION: EXPLORING THE
IMPACT OF DESIGN ALTERNATIVES

In this section, we utilize the proposed HW/SW framework
to analyse the impact of differing architectural decisions on the
timing and resource usage. We focus our timing analysis on
the data fusion engine that forms the heaviest computational
component of the system. Specifically, we explore archi-
tectural decisions regarding to (i) the memory architecture,
i.e. instruction and data cache system configuration, and (ii)
the inclusion/exclusion of the a Floating Point Unit (FPU),
across embedded application instances with differing machine
learning algorithms for the data fusion engine, i.e. NN, SVM
and D. Trees. Such analysis can be further used as feedback
to the hardware design team, to customize the design of the
medical device.

Figure 3 depicts the impact of cache size (instruction and
data) and FPU allocation on the performance of the fusion
engine. As shown the D. Trees forms the most efficient
decision regarding to performance. The existence of an FPU
in the microprocessor reduces the execution time of the
algorithms operating on floating point data, like SVM and
NN. Decision trees are not affected since their code structure is
based on branch instructions, which are not requiring complex
FP operations to benefit from the FPU. In contrast to the FPU,
the cache memory size should be carefully chosen in order
to speed-up the execution, since the data access patterns in
memory can be such that the average execution is increased
even compared to the design with no cache memory, e.g. 256
cache size configuration for the SVM w/o FPU.

V. CONCLUSION

In this paper we presented a framework for HW and SW
emulation of wearable devices for remote wound monitoring
and management. The framework utilizes the hardware design
flexibility provided by FPGAs devices, which are further
extended with a set of off-the-shelf hardware components to
create a modular HW platform emulating state-of-art medical
devices. An embedded SW application customized for wound
monitoring and management has been developed and ported
on the proposed HW platform, and an exploration campaign
on the architectural design choices to tune design parameters
suitable for the application specific HW and SW requirements.

REFERENCES

[1] [Online] SWAN-iCare, www.swan-icare.eu
[2] [Online] Xilinx Inc., http://www.xilinx.com/products/silicon-

devices/fpga/spartan-3.html
[3] Yaser S. Abu-Mostafa, Malik Magdon-Ismail, and Hsuan-Tien Lin. 2012.

Learning from Data. AMLBook.
[4] [Online] Pervasive Displays Inc., http://www.pervasivedisplays.com/kits/

adapTag
[5] [Online] Beagle Board, http://beagleboard.org/beagleboard-xm
[6] [Online] LWIP, http://www.xilinx.com/ise/embedded/edk91i docs/

lwip v2 00 a.pdf

Dimitris
Typewritten Text
2015, 4th International conference on Modern Circuits and Systems Technologies




