
Generating custom bitwidth 4:2 compressors in
hardware description language from an online tool

Ioannis Petrousov
Department of Informatics

and Telecommunication Engineering
University of Western Macedonia

Kozani, 50100, Greece
petrousov@gmail.com

Minas Dasygenis
Department of Informatics

and Telecommunication Engineering
University of Western Macedonia

Kozani, 50100, Greece
mdasyg@ieee.org

Abstract—The extensive implementation of sensors to measure
and quantify various sizes makes digital signal processing a
repetitive and widely used task. Moreover the need to keep the
size of the information small has produced various redundant
arithmetic number systems and compressors which use less
hardware and consume less power. Especially in the real-time
computing where the results must be produced as soon as
possible with the less delay the implementation of such techniques
becomes critical. Considering this problem, we have created a
web accessible tool able to generate custom bitwidth 4 to 2
compressors in hardware description language. The produced
compressors are syntesizable and use carry-save arithmetic for
the input and output. The circuits have been synthesized for
Xilinx Virtex 6 FPGA and operate up to 533MHZ.

I. INTRODUCTION

Widely used devices such as smartphones, household appli-
ances such as washing machines and medical devices, contain
digital circuits which perform the task of digital signal process-
ing (DSP). This repetitive task can become computationally
intensive as the size of the input data grows, thus increasing
the time needed to produce the results. This delay plays a
crucial role especially in the occasion of monitoring or real
time systems where actions are based on the results and
must be performed as soon as possible. Moreover, the classic
representation of data in binary arithmetic has proven to be
inadequate, as it requires more time and more hardware to
produce and store the results. Alternative numbering systems
were created to tackle the aforementioned parameters of time
and data size.

Redundant arithmetic systems are used extensively to speed
up arithmetic operations [1] [2], [3] [4]. In fact, in [1] a
computer aided design (CAD) tool has been created which
recognizes patterns of operations where borrow-save arithmetic
can be used. The properties of these arithmetic systems enable
certain arithmetic functions, such as addition/subtraction, mul-
tiplication and more, to be performed faster and require less
hardware.

Compressors are the building blocks of multipliers. Mul-
tipliers themselves are important components that dictate the
overall performance of arithmetic circuits. Compressors allow
the performance of addition or subtraction with minimal carry
propagation. This ability constitutes a major speed enhance-
ment technique used in modern digital circuits. A m:n com-
pressor performs the addition of m numbers and reduces them

to n, while keeping the carries and sum separate. For example,
a 4:2 compressor accepts 4 numbers and reduces them to
2. This way any amount of numbers can be added together
without carry propagation and only the recombination of the
final carry and save part requires carry propagating addition.

In this work we have created a generator able to pro-
duce 4:2 number compressors for any bitwidth in hardware
description language (HDL), specifically in VHDL. The input
signals of the produced compressors are in CS representation, a
redundant system which has proven be more suited for the field
of DSP [5] [2] [6]. The generator is framed as a functionality to
our previously developed online tool1 [7] [8] and it’s available
for anyone to use2.

The rest of this paper is organized as follows. In Section
II, we present some related bibliography, in Section III, we
extensively explain the carry save arithmetic and present some
indicative examples. Section IV covers the architecture of
our tool and the options that it offers for the creation of
the compressor module which is described in Section V.
Following, we present some metrics from our experimental
results (Section VI) and conclude our research in Section VII.

II. RELATED WORK

Since the inception of 4:2 compressor [9] using full adders
(FA), the module has been actively researched [10] [11] [12].
One of the most significant redesigns of the original module
was probably the introduction of the Wallace tree [12] which
reduced the critical path. Other researches focused on gate
decomposition [13] in order to consume less area. More
research is being done as the CMOS technology shrinks [14]
[15] [16]. In [11] a novel full adder design based on the linear
threshold gate (LTG) is proposed.

All the aforementioned researches are indeed improve-
ments of the original design. Many of them use expensive
and commercial programs (such as the tools from synopsys
[17]) to design, verify and simulate their claims. None of the
above mentions the creation of a free web based tool able to
automatically generate custom IP cores. Moreover, to our best
knowledge there is no online tool that can produce custom 4:2
compressors with the ability to download them as an IP core.

1http://arch.icte.uowm.gr/hdl/
2http://arch.icte.uowm.gr/hdl/compressor42.php

Dimitris
Typewritten Text
2015, 4th International conference on Modern Circuits and Systems Technologies

Dimitris
Typewritten Text

Dimitris
Typewritten Text



The process of generation of HDL code from a higher level
language is not new and a plethora of tools [18], [19], [20],
[21] which use different programming languages to produce
circuits in HDL exists. In [18] the python programming
language is used to produce hardware description language
designs. The SPARK project [19] is a high level synthesis
framework which uses descriptions in C to produced VHDL.
[22] uses GEZEL designs to produce synthesizable VHDL
code. In [21], an online tool offers a collection of generators
able to produce application specific hardware descriptions such
as Discrete Fourier Transform (DFT).

Not all of the above tools offer the ability to work online
and produce custom circuits when needed. Those that do
offer this, are limited to produce certain modules for specific
purposes. The authors of [23] after examining and comparing
such tools, conclude that there is a lack of EDA automation.

III. BASIC CARRY-SAVE ARITHMETIC

The carry-save (CS) arithmetic is part of a group of
numbering systems named redundant arithmetic numbering
systems. In contrast to the binary system, in CS a decimal
number requires twice as many bits for it’s representation. A
CS number consists of two parts, namely carry and save [5].

A∗ = Ac +As

carry Ac

save As

(1)

Considering this, a decimal number can have many CS
representations, where a CS number has only one decimal
representation. The possible values of CS digits are {0,1,2},
thus making it a radix-2 system. This way, when adding two
numbers, the addition of each column of bits is independent
and does not propagate carry to the next.

101110
+ 110011

211121
(2)

Equation 2 illustrates this property where 1+1 in column 1 and
5 does not propagate a carry to the next column. The number
of the radix can be increased if needed in order to maintain it’s
property of carry-free nature. This technique is usually used
where the addition of three numbers or more is required. For
example, if we want to add three numbers and at one point we
need to add 3 bits 1+1+1, the result can be 3 to avoid carry
propagation to the next digit.

In order to convert a CS number to binary, starting from the
least significant bit (LSB), rewrite every 2 as 0 and propagate
the carry to the next column.

112020
112100
1000100

(3)

Equation (3) demonstrates this conversion where carries are
expanded and propagated. In the scope of this paper and to
show this transformation we performed the operation serially,
as we cannot predict the possible carries from each column.

IV. THE ONLINE GENERATOR AND COMPILER

After considering the importance of the hardware compres-
sor, we decided to create a tool which can automatically gen-
erate custom IP cores of this module. Unlike some previously
mentioned works, our tool requires no installation, is online
and publicly accessible by anyone through a web browser.
We utilize a number of technologies (PHP, Python, JSON)
in order to deliver a syntactically correct and synthesizable
VHDL description. Our tool is partitioned in two different
departments, according to their function: the front end and
the back end. These modules exchange information using the
JavaScript object notation (JSON) format [24].

The front end is a web based form, where the user
inputs parameters of the circuit. These parameters include the
bitwidth and the type the compressor, the option to pipeline
the circuit with D flip-flops, the number of random generated
vectors to be created and the option for these vectors to be
unique (requiring more time to be created). Validation of
the inputs occurs upon submission. Optionally, our tool can
generate a schematic and dot file of the design.

The input bitwidth number determines the range of the
input numbers the module is able to process. This also de-
termines the range of random numbers which are going to be
produced by the testbench generator module. As seen from the
architecture of the module in figure 1, the bitwidth determines
the number of FAs and other components that will be used.

We offer the ability to select between two types of com-
pressors. The first type includes only the 4:2 compressor which
can handle only positive numbers and produces positive results.
The second type can handle both positive and negative numbers
with the usage of two’s complement. This architecture is
implemented with the inclusion of a 2:1 multiplexer which
selects the positive or the negative number. The second type
requires more components from the first one.

The two optional parameters are the schematic and dot file
graph generation. The schematic is exported as a picture in
PNG format and shows the components and their interconnec-
tions. The dot file is a graph written in dot language and can
be used by humans or a computer program.

The back end provides the analysis and construction mod-
ules for the compressors. It consists of three modules: (i) the
Compressor design module, which analyzes the user inputs
and creates the specific design description in a special netlist
format called a-HDL [8], (ii) the HDL Generator module,
which takes as input this netlist format and creates signals,
networks, assignments, and connections, resulting in the output
description in VHDL, and (iii) the VHDL Test bench creator,
which takes as input the constructed data structures of the
previous module, and generates a full VHDL test bench. These
modules are written in the Python programming language.
The more computationally intensive functions are written in
Cython which is translated to C, which is in order compiled
to static object (*.so) files. For this reason the modules have no
restrictions for the input bitwidth and our tool can generated
compressors which can handle numbers up to 256 bits.

Dimitris
Typewritten Text
2015, 4th International conference on Modern Circuits and Systems Technologies



A. Compressor design module

The compressor design module creates a netlist in an
internal format developed at our laboratory, which we call a-
HDL and operates in two stages: (a) locate all the 1 and (b)
carry save addition. This module operates in three stages. The
first stage computes the network AND gates. The outcomes of
the first stage are two: (a) the a-HDL structure and (b) a two
dimensional array that specifies for every column the bits that
should be taken into consideration. The second stage, accepts
as input the array created in the previous stage and performs an
optimized addition, using carry save adders. We have named
this stage with the term reduction stage. This stage consists of
many iterations. In every iteration i the reduction stage, scans
all columns j starting from the least significant column, locates
the columns that have more than one bit and places full adders
(FA) or half adders (HA). The placement of adders is done in
the best efficient way, in order to minimize the total number of
FAs or HAs. This is achieved by delaying the placement of an
FA or HA in favor of a better placement in a future iteration.

B. HDL Generator Module

The netlist created in the previous stage is given as input to
the HDL Generator Module. This is a general purpose VHDL
generator library that can be easily connected to many different
generators. This module accepts as input a special and compact
netlist format, which we name abstracted HDL. This netlist
format, as well as the HDL Generator Module have already
been presented in other works [8] and do not belong to the
scope of this paper, and thus we will not describe them further.

C. HDL Test bench Generator

This module, is of out most importance, because it creates
multiple vectors of testbenches, which can be used to test the
correctness of the design in an HDL simulator. As it is evident,
the compressor design module is a very complicated process,
which should be tested thoroughly. Our tool accepts as input
the number of input cases to create, and generates the test
bench file in VHDL. To do this, first it creates an empty entity
declaration, then it instantiates the top level component and
creates signals for every input and output port. Furthermore, it
creates a clock process and a function that is used to convert
bits to integer. The next step is to create the requested number
of input test cases.

The algorithm here takes into account the type of the
compressor and produces signals which fit each design. If
the compressor can handle negative numbers, the next steps
are followed. For the number of input test cases, the module
performs a loop in which two random number ranging from 0
to the maximum bitwidth and a random selected signal from
0 to 1 are produced. The numbers are converted to binary and
extended to the full bitwidth. Then the compression of the
random inputs is precomputed and a VHDL assert clause is
written on the testbench file to check the precomputed output,
with the output that will be computed from the circuit. A wait
clause is used in order to keep the correct timing. The latency
has been reported by the HDL generator, and is known in this
tool. The same process is followed for the simple compressor
without the generation of the signal s.

The output consists of the VHDL codes for the multiplier,
the library with the components and the testbench. These
codes are vendor neutral and synthesizable in ASIC or FPGA.
Furthermore, two optional outputs, the circuit schematic and
dot file are available for download. The process of generation
as well as the metrics for the components are presented to the
user as default.

V. ARCHITECTURE OF THE PRODUCED 4:2 COMPRESSORS

As mentioned earlier, in CS, the addition of three binary
numbers results to two binary numbers, this process is some-
times referred to as 3-2 compression. The same applies to
the addition of more numbers, in our case 2 numbers, each
consisting of save and carry parts, are reduced to one. The
bitwidth of the input numbers is unrestricted and determined
by the designer. The compressor is realized with full adders.

Fig. 1. 4:2 compressor with 2:1 mux for negative numbers

Figure 1 shows the architecture of the produced circuit.
The input numbers A∗ and B∗ and the output number N∗ are
always in CS. The layout allows the component to perform the
operations of addition or subtraction. The type of operation to
be performed is controlled by the select bit S.

If the signal S is 0, the chosen operation is the CS addition
A∗ + B∗. The 2:1 multiplexer allows the number B∗ to pass
without further alteration to it. The addition is performed in
parallel without propagating the possible carries from each
column. The resulted number N∗ is in CS format, which means
that the possible digits of this number are {0,1,2}.

On the other hand, if the signal S is 1, the dictated operation
is the subtraction A∗ −B∗. This operation requires the signal
B∗ to be in two’s complement, as the only action the module
is able to perform is the addition. Figure 1 shows that the 2:1
multiplexer accepts the signals B∗ and the inverted signal B∗

1s.
Where B∗

1s is actually the one’s complement of the original
number and it is composed from the carry and save parts.
Transformation of both of these parts to two’s complement is
required. For this reason the select bit S becomes the carry-in
in the two LSB places. This translates to the addition of 1
to the already one’s complement numbers, which transforms

Dimitris
Typewritten Text

Dimitris
Typewritten Text
2015, 4th International conference on Modern Circuits and Systems Technologies

Dimitris
Typewritten Text



them to two’s complement. Equation 4 shows the subtraction
A∗ −B∗.

N∗ = A∗ +B∗
1s =

= A∗ +Bs
1s +Bc

1s + 1 + 1 =
= A∗ +Bs

2s +Bc
2s =

= A∗ +B∗
2s = A∗ −B∗

(4)

Where A∗ is the CS number, Bs
1s and Bc

1s are the one’s
complement of the save and carry parts, respectively Bs

2s
and Bc

2s are the two’s complements and B∗
2s is the two’s

complement of the CS number B∗. In the second line the
addition of the two aces constitutes the addition of the signal
S.

VI. EXPERIMENTS AND METRICS

To present a few metrics and experimental results and eval-
uate the produced designs, we have generated and synthesized
a large number of compressors. It is worth mentioning that
there is no online tool able to generate custom compressors in
HDL. For this reason we cannot provide comparison results
from other authors.

A few representative samples are shown on Table 1. The
synthesis was realized in Xilinx ISE 13.3 for the Virtex 6
FPGA family (XC6VLXl760, speed grade -1). The columns
which show the number of transistors and components were
calculated by our tool. Our non-pipelined design for 8 bit
numbers was clocked at over 500 MHz and uses only 15 slices.

TABLE I. AUTOMATICALLY GENERATED COMPRESSORS FOR VARIOUS
BITWIDTHS.

#bits #transistors #components
8 356 16

16 708 32
32 1412 64
64 2820 128
128 5636 256

TABLE II. SYNTHESIS RESULTS FROM XILINX ISE.

#bits #slices freq(MHZ) power(Watt)
8 15 533.902 4.447

16 27 544.365 4.447
32 63 500.751 4.447
64 116 540.540 4.447
128 219 532.481 4.447

VII. CONCLUSIONS

Our contribution to the electronic design automation (EDA)
domain, is the creation of a generator, accessible through
the web, able to produce custom bitwidth 4:2 compressor
designs in VHDL. The compressors utilize the benefits of
CS arithmetic, a redundant numbering system, which greatly
speeds up the performance of arithmetic operations. The pro-
duced designs are syntactically correct and can be synthesized
and verified to confirm our results. Moreover, they can be
implemented in FPGA or ASIC circuits and are vendor neutral.
The output of our tool includes the VHDL codes for the
compressor, the library with the used components, the block
schematic and some calculated metrics such as the number
of transistors. No other online tool which offers the same
functionality exists to date.

REFERENCES

[1] R. Chotin-Avon, S. Belloeil and H. Mehrez, “Arithmetic data path
optimization using borrow-save representation,” in Symposium on VLSI,
2008. ISVLSI ’08. IEEE Computer Society Annual, 2008.

[2] Y. Dumonteix and H. Mehrez, “A family of redundant multipliers
dedicated to fast computation for signal processing,” in Circuits and
Systems, 2000. Proceedings. ISCAS 2000 Geneva., 2000.

[3] D. Neuhuser and E. Zehendner, “Reduced redundant arithmetic applied
on low power multiply-accumulate units,” in 11th WSEAS international
conference on Electronics, Hardware, Wireless and Optical Communi-
cations.

[4] N. Homma, T. Aoki, T. Higuchi, “A systematic approach for designing
redundant arithmetic adders based on counter tree diagrams,” IEEE
Transactions on Computers, vol. 57, 2008.

[5] T. G. Noll, “Carry-save architectures for high-speed digital signal
processing,” Journal on VLSI Signal Processing, vol. 3, pp. 121–140,
1991.

[6] Y. Kim and T. Kim, “Accurate exploration of timing and area trade-
offs in arithmetic optimization using carry-save-adders,” in Design
Automation Conference, 2001. Proceedings of the ASP-DAC 2001. Asia
and South Pacific, 2001.

[7] M. Dasygenis, “A distributed vhdl compiler and simulator accessible
from the web,” in PATMOS 2014 Conference: Power and Timing Mod-
eling, Optimization and Simulation (PATMOS), 2014 24th International
Workshop on, At Mallorca, 2014.

[8] M. Dasygenis, “A web eda tool for the automatic generation of
synthesizable vhdl architectures for a rapid design space exploration,”
in DTIS 2014 Conference: International Conference on Design and
Test of Integrated Systems in Nanoscale Technology 2014, At Santorini,
Greece, 2014.

[9] A. Weinberger, “4:2 carry save adder module,” IBM Technical Disclo-
sure Bulletin, vol. 23, 1981.

[10] M. Ghasemzadeh, A. Akbari, K. Hadidi, A. Khoei “A novel fast
glitchless 4-2 compressor with a new structure,” in Mixed Design of
Integrated Circuits and Systems (MIXDES), 2014 Proceedings of the
21st International Conference, 2014.

[11] D. Bahrepour, M.J. Sharifi, “A novel high speed full adder based on
linear threshold gate and its application to a 4-2 compressor,” Arabian
Journal for Science and Engineering, vol. 38, pp. 3041–3050, 2013.

[12] R. Hussin, A. Y. Shakaff, N. Idris, Z. Sauli, R .Che Ismail, A. Ka-
marudin, “Redesign the 4: 2 compressor for partial product reduction,”
in Conference: ACST07: Proceedings of the 3rd IASTED Conference
on Advances in Computer Science and Technology, 2007.

[13] A. Pishvaie, G. Jaberipur, A. Jahanian, “Redesigned cmos (4; 2)
compressor for fast binary multipliers,” Journal on Electrical and
Computer Engineering, vol. 36, pp. 111 – 115, 2013.

[14] A. Pishvaie, G. Jaberipur, A. Jahanian, “Improved cmos (4; 2) compres-
sor designs for parallel multipliers,” Journal on Electrical and Computer
Engineering, vol. 38, 2012.

[15] A. Fathi, S. Azizian, K. Hadidi, A. Khoei, A. Chegeni, “Cmos im-
plementation of a fast 4-2 compressor for parallel accumulations,” in
Circuits and Systems (ISCAS), 2012 IEEE International Symposium,
2012.

[16] A. Fathi, S. Azizian, K. Hadidi, A. Khoei, “A novel and very fast 4-2
compressor for high speed arithmetic operations,” IEICE Transactions
on Electronics, vol. E95.C, 2012.

[17] synopsys. [Online]. Available:
http://www.synopsys.com/Tools/Pages/default.aspx

[18] myhdl. [Online]. Available: http://www.myhdl.org/info.html
[19] SPARK. [Online]. Available: http://mesl.ucsd.edu/spark/
[20] F. de Dinechin. (2011) flopoco. [Online]. Available:

http://flopoco.gforge.inria.fr/
[21] spiral. [Online]. Available: http://www.spiral.net/hardware.html
[22] P. Schaumont. (2010) gezel. [Online]. Available:

http://rijndael.ece.vt.edu/gezel2/codegeneration.html
[23] Y. Yankova, K. Bertels, S. Vassiliadis, R. Meeuws, A. Virginia, “Auto-

mated hdl generation: Comparative evaluation.”
[24] D. Crockford. (2006) The application/json media type

for javascript object notation (json). [Online]. Available:
http://www.ietf.org/rfc/rfc4627.txt

Dimitris
Typewritten Text
2015, 4th International conference on Modern Circuits and Systems Technologies

Dimitris
Typewritten Text




