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   Abstract—In this paper, our main goal is to fulfill the antenna 
selection (AS) criterion for a multiple–input multiple-output 
(MIMO) system, which, in our case, is the maximization of the 
channel capacity. In order to accomplish this, we display the 
performance of biogeography-based optimization (BBO) 
algorithm on the channel capacity function and compare it with 
the genetic algorithm (GA), the real-value genetic algorithm 
(RVGA) as well as the ant colony optimization (ACO). The 
results, which are presented in this paper, are based exclusively 
on simulated channels and highlight the superiority of BBO over 
the aforementioned optimization algorithms. 

Index Terms— Multiple–input multiple-output (MIMO) 
systems, antenna selection (AS), biogeography-based 
optimization (BBO), genetic algorithm (GA), real-value genetic 
algorithm (RVGA), ant colony optimization  (ACO), exhaustive 
search (ES).  
 

I. INTRODUCTION 
owadays, due to the increasing demand of faster data 
transmission speed, multiple–input multiple-output 
(MIMO) systems have played a major role on antenna 

array communications. With their contribution we have 
achieved higher data rates and improved reliability. Although, 
the use of multiple antennas, at both sides of a communication 
link, implies hardware complexity, which leads to increasing 
cost demands. This becomes clear enough, if we take into 
consideration that the number of the analogue RF chains (i.e. 
amplifiers, A/D converters etc.) increase linearly with the 
number of antennas used, and consequently, so does the cost. 
Owing to this fact, it is more preferable to have a smaller 
number of RF chains than the number of antennas in each link 
end. 
   In order to mitigate the complexity of the MIMO system, 
antenna selection method has been introduced [1, 2]. The 
principle of this method is to use the best LR out of NR 
antennas located at the receiver side and the best LT out of NT 
antennas located at the transmitter side. Thus, the question 
arises is, which antenna sub-set will be chosen from each link 
end, in order to provide us with the maximum channel 
capacity.      
   However, reducing the number of antennas will inevitably 
lead to performance degradation. For this reason, it is of the 
essence to find an antenna optimal algorithm that will give us 
the best results. One way to find the appropriate sub-set is to   
search over all possible combinations of antennas in each side, 

which implies unaffordable computational complexity 
(exhaustive search – ES). Hence, the only way to 
counterbalance this high computational complexity is to find 
sub-optimal algorithms with performance as close as possible 
to the one provided by the ES. 
   In this paper, we evaluate the BBO [3] performance  and 
compare it with three other evolutionary algorithms.  The 
simulation results show that the performance of BBO enhance 
the maximum capacity result in comparison with the others 
EAs. 
 

II. MIMO SYSTEM MODEL AND AS PROBLEM 
DEFINITION 

A. MIMO capacity model 
We consider a spatial multiplexing MIMO system with NT 

transmits antennas and NR receive antennas, in a frequency 
non-selective fading wireless channel. Then, the complex     
NR x 1 signal vector y can be written with the following form: 

𝐲 = �Ex
NT
𝐇𝐱 + 𝐳,                                                                    (1) 

where 𝐱 = [x1, x2, . . . , xN𝑇]𝑇 is the complex NT x 1 
transmitted symbol vector. Ex is the constant signal energy of 
each transmitted signal xi, which is derived from the ith 
transmit antenna. H denotes the NR x NT channel matrix, its 
element hij stands for the channel gain between the ith transmit 
antenna and the jth receive antenna with a zero-mean and unit 
variance independent and identically distributed (i,i,d) 
complex Gaussian  random variable. 𝐳 = [z1, z2, . . . , zN𝑅]𝑇 
represents the NR x 1 white complex Gaussian noise vector 
with zero-mean and covariance matrix N0𝐈NR, where 𝐈NR is a 
NR x NR  identity matrix. 
   Suppose that the channel state information (CSI) is available 
at the receive side only and the transmitted complex vector x 
is statistically independent, i.e., E{𝐱𝐱H} =  𝐈NT  , where E{} is 
the expected value operator, thus the capacity of the 
deterministic MIMO channel can be represented by [2, 9]: 
 
𝐶 = 𝑙𝑜𝑔2 det �𝐈NT + Ex

NTN0
𝐇H𝐇�,                                         (2) 

 
The above equation for the capacity is applicable when 
NR ≥  NT [10]. det(.) and (.)H are the determinant and the 
Hermitian operation, respectively. 
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B. The AS Problem  
Suppose that there are LT and LR RF chains at transmit and 
receive sides respectively, 𝐿𝑇 ≤ 𝑁𝑇 and 𝐿𝑅 ≤ 𝑁𝑅. The main 
purpose of the AS problem is to select the proper antenna 
subset, i.e., LT out of NT antennas at the transmitter side and 
LR out of NR antennas at the receiver side, so as to maximize 
the capacity given by: 
 
𝐶̅ = 𝑙𝑜𝑔2 det �𝐈𝐿T + Ex

LTN0
𝐇�H𝐇��,                                          (3) 

 
Where 𝐇� is a LR x LT sub-block matrix of H.  Taking into 
consideration that, for a MIMO wireless system with (NR, NT) 
antennas there will be Nselect different possibilities of selection 
of (LR, LT) active antennas given by:  
 
Νselect =  NT!

LT!(NT−LT)!
  ∗   NR!

LR!(NR−LR)!
,                                     (4) 

 
the optimal ES AS will be a complex task to implement. 

II. SIMULATION RESULTS 
    In this part, we present the simulation results of the 
aforementioned evolution algorithms that were used in order 
to maximize the channel capacity of a wireless MIMO system.  
We assume that the number of antenna elements at the 
transmitter and receiver side is ΝΤ = 16 and NR = 16, 
respectively. Three scenarios, (LT, LR) = (2, 4), (3, 5)  and    
(4, 6) are considered. For ACO, we used the following 
parameters: initial pheromone value τ0 = 1Ε-6, pheromone 
update constant Q = 20, exploration constant q0 = 1, global 
pheromone decay rate ρg = 0.9, local pheromone decay rate    
ρl = 0.5, pheromone sensitivity α = 1, and visibility sensitivity 
β = 5. For RVGA and GA we used the following parameter 
values: crossover probability pc = 1, and mutation probability 
pm = 0.01. Additionally, for the GA we used roulette wheel 
selection and single point crossover.  Furthermore, for the 
BBO we had habitat modification probability pmod = 1, step 
size for numerical integration of probabilities dt = 1, 
immigration probability bounds per SIV [0, 1], maximum 
immigration rate for each habitat I = 1, maximum emigration 
rate for each habitat  E = 1, and mutation probability             
pm = 0.005. For all the algorithms, the population size is set to 
50, the number of generations is also set to 50 and the elitism 
parameter  is set to two.  
In general, it is obvious, from Fig.1 that the BBO algorithm 
performs better among the other evolution algorithms, while 
they all have the same computational complexity. Moreover, 
ACO is clearly inferior to all of them. Specifically, we can 
note that BBO outperforms the other algorithms in the first 
two scenarios: (LT, LR) = (2, 4) and (LT, LR) = (3, 5). RVGA 
comes second in the first scenario: (LT, LR) = (2, 4), followed 
by the GA. Furthermore, in the second scenario:                   
(LT, LR) = (3, 5), GA and RVGA have similar results, with the 
RVGA obtaining better results for higher SNR (Signal to noise 
Ratio) values, namely 10dB and 20dB. In the last scenario: 
(LT, LR) = (4, 6) GA antagonizes the BBO, resulting in slightly 
better performance for SNR = 5, 10 and 20dB, yet BBO 
sustain better overall performance. 

 

 
 
Fig.1.Capacity versus SNR for several (LT, LR) combinations. 

III. CONCLUSION 
In this paper, we purposed the BBO AS algorithm, in order to 
examine the problem of joint transmit/receive antenna 
selection in MIMO wireless systems.  We compared the BBO 
algorithm with other suboptimal algorithms that have the same 
computational complexity, using the capacity maximization 
criterion. The simulation results proved that the purposed 
BBO AS algorithm outperforms the ACO, GA as well as 
RVGA algorithm in several combinations (LT, LR) of transmit 
and receive antennas, respectively. 
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